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The goal of this document is to show that categories, functors, and natural transformations form a strict 2-category.
In particular, I (try to) write out all of the necessary details, using diagrams over equations whenever relevant. I
start by giving a definition of strict 2-category for the sake of referencing during the proof. I then define the data
of the 2-category of categories and show that they satisfy the definition of a (strict) 2-category.

Definition: A strict 2-category C consists of

1. a collection of 0-cells;

2. for each pair of 0-cells (x, y), a category C(x, y), whose objects are called 1-cells and whose morphisms are
called 2-cells; composition of 2-cells within the categories C(x, y) is called vertical composition;

3. for each 0-cell x, a distinguished 1-cell 1x ∈ obC(x, x) called the identity 1-cell at x;

4. for each triple of 0-cells (x, y, z), a functor ◦ : C(y, z)× C(x, y) → C(x, z) called horizontal composition;

which satisfy the following conditions:

I. (identities)

• the identity 1-cells are strict left and right units with respect to horizontal composition, i.e. for each
1-cell f ∈ obC(x, y),

f ◦ 1x = f and 1y ◦ f = f,

• the identity 2-cells corresponding to the identity 1-cells are strict left and right units with respect to
horizontal composition, i.e. for each 2-cell α ∈ morC(x, y),

α ◦ 11x = α and 11y ◦ α = α;

II. (associativity) horizontal composition is strictly associative, i.e.

• for each triple of 1-cells (h, g, f) ∈ obC(y, z)× obC(x, y)× obC(w, x),

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

• for each triple of 2-cells (γ, β, α) ∈ morC(y, z)×morC(x, y)×morC(w, x),

γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.

Let’s verify that if we define

• 0-cells = categories,

• 1-cells = functors,

• 2-cells = natural transformations,

then we get a strict 2-category.
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1. Given.

2. For two categories C,D, we already know that the functors from C to D together with the natural transfor-
mations between such functors form a category Fun(C,D). Here are the main observations:

• The identity natural transformation 1F is defined as the identity map at every object c; 1F (c) = 1F (c).

• Composition is defined “component-wise” at each object, so associativity is thus inherited from asso-
ciativity of D.

3. For a category C, the identity functor 1C : C → C is the distinguished identity 1-cell.

4. Given categories C,D,E, we need a composition functor

◦ : Fun(D,E)× Fun(C,D) → Fun(C,E).

On objects (i.e. 1-cells), this is simply composition of functors:

( C D EF G ) 7→ ( C EG◦F ).

For a pair of morphisms (= 2-cells = natural transformations) (β, α) ∈ Fun(D,E) × Fun(C,D), where
α : F1 ⇒ F2 : C → D and β : G1 ⇒ G2 : D → E, we need to define a natural transformation

β ◦ α : G1 ◦ F1 ⇒ G2 ◦ F2 : C → E.

The diagram below illustrates the assignment we want to define:

(
C D E

F1

F2

α

G1

G2

β

)
7→

(
C E

G1F1

G2F2

β ◦ α
)
.

In other words, for each c ∈ obC, we need a morphism (β ◦α)c : G1F1c → G2F2c in E. Applying α to c, we
get a morphism αc : F1c → F2c in D. There are two ways to send this morphism to one in E, namely, via
G1 and G2. These two morphisms are connected by β, as in the following diagram (which commutes since
β is a natural transformation):

G1F1c G2F1c

G1F2c G2F2c,

β(F1c)

G1(αc) G2(αc)

β(F2c)

(1)

This diagram gives us a unique diagonal map (β ◦ α)c : G1F1c → G2F2c defined as either of the two
compositions:

(β ◦ α)c := (βF2c)(G1αc) = (G2αc)(βF1c).

In order to show that ◦ is well-defined, we need to show that β ◦α is a natural transformation G1F1 ⇒ G2F2.
Let f : c → c′ be a morphism in C. Then we get a cube of morphisms in E:

G1F1c G2F1c

G1F1c
′ G2F1c

′

G1F2c G2F2c

G1F2c
′ G2F2c

′,

G1F1f

G2F1f

G1F2f

G2F2f
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where the back and front faces are the commutative squares defining (β ◦α)c and (β ◦α)c′ as in (1), and the
four maps connecting the corners of the two squares are the four compositions of functors applied to the map
f . The left and right squares are G1 and G2 applied to a square in D which commutes by naturality of α.
The top and bottom squares commute by naturality of β. The naturality property of β ◦α is commutativity
of the (diagonal) square formed by the maps (βα)c, (βα)c′, G1F1f, and G2F2f . Commutativity of this square
follows from commutativity of all six faces of the cube.

Thus, the assignment defining the horizontal composition functor ◦ is well-defined; we need to show that it
is a functor.

First, let us check that ◦ preserves identity 2-cells, i.e.

1G ◦ 1F = 1G◦F ,

where 1F and 1G denote the identity natural transformations as in the following diagram:

C D E.

F

F

1F

G

G

1G

We can apply the defining diagram as in (1):

GFc GFc

GFc GFc.

1G(Fc)

G(1F c) G(1F c)

1G(Fc)

Note that every edge in the diagram is the identity, so the diagonal is as well.

Next, we need to show that horizontal composition preserves vertical composition. We’ll use the notation ·
for vertical composition (i.e. composition of natural transformations within the functor categories) in order
to distinguish it from horizontal composition, ◦. With this notation, the functoriality property is

◦((β2, α2) ·(β1, α1)) = (β2 ◦ α2) ·(β1 ◦ α1),

where ◦((β2, α2) ·(β1, α1)) = ◦(β2 ·β1, α2 ·α1) = (β2 ·β1) ◦ (α2 ·α1). So functoriality amounts to showing

(β2 ·β1) ◦ (α2 ·α1) = (β2 ◦ α2) ·(β1 ◦ α1). (2)

We can depict this as a diagram:

C D E,

F1

F2

F3

α1

α2

G1

G2

G3

β1

β2
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where the words “horizontal” and “vertical” correspond to the respective directions in the diagram, and the
parentheses in equation (2) indicate the order in which to carry out the compositions.

To prove (2), consider the commutative squares which define β1 ◦ α1 and β2 ◦ α2 (as in (1)):

G1F1c G2F1c

G1F2c G2F2c

β1(F1c)

G1(α1c)
(β1◦α1)c

G2(α1c)

β1(F2c)

G2F2c G3F2c

G2F3c G3F3c.

β2(F2c)

G2(α2c)
(β2◦α2)c

G3(α2c)

β2(F3c)

Notice that we can connect these two squares at G2F2c to form a single diagram whose diagonal composite
is the right side of (2) evaluated at c ∈ C:

G1F1c G2F1c

G1F2c G2F2c G3F2c

G2F3c G3F3c.

β1(F1c)

G1(α1c)
(β1◦α1)c

G2(α1c)

β1(F2c)

β2(F2c)

G2(α2c)
(β2◦α2)c

G3(α2c)

β2(F3c)

(3)

We can also depict the left side of (2) evaluated at c as the diagonal in the following commutative diagram
as in (1):

G1F1c G3F1c

G1F3c G3F3c.

(β2 ·β1)(F1c)

G1((α2 ·α1)c) G3((α2 ·α1)c)

(β2 ·β1)(F3c)

Since (vertical) composition of natural transformations is defined component-wise (and by invoking functo-
riality), we can refine the above diagram to:

G1F1c G2F1c G3F1c

G1F2c G3F2c

G1F3c G2F3c G3F3c.

β1(F1c)

G1(α1c)

β2(F1c)

G3(α1c)

G1(α2c) G3(α2c)

β1(F3c) β2(F3c)

Notice that we can superimpose the above diagram on the diagram in (3) to get a diagram (which we are
not assuming is commutative):
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G1F1c G2F1c G3F1c

G1F2c G2F2c G3F2c

G1F3c G2F3c G3F3c,

β1(F1c)

G1(α1c)

β2(F1c)

G2(α1c) ? G3(α1c)

β1(F2c)

G1(α2c) ?

β2(F2c)

G2(α2c) G3(α2c)

β1(F3c) β2(F3c)

where the small squares marked with a ? are not yet known to commute. Notice that these squares are also
instances of horizontal composition. Namely, the top right square is (β2 ◦ α1)c, and the bottom left square
is (β1 ◦ α2)c. Thus, since all the small squares commute, the entire diagram commutes. So there is only one
diagonal composite G1F1c → G3F3c. This proves that horizontal composition is a functor.

Now we have to show that the data 1-4 satisfy the conditions of a strict 2-category.

I. The identity 1-cells are identity functors, which we know are strict left and right units with respect to
composition of functors.

Given functors F,G : C → D, and a natural transformation α : F ⇒ G, we need to show that

α ◦ 11C = α and 11D ◦ α = α.

In each case, we apply the defining diagram (1):

F1Cc G1Cc

F1Cc G1Cc,

α(1Cc)

F (11C c) G(11C c)

α(1Cc)

and

1DFc 1DFc

1DGc 1DGc,

11D (Fc)

1D(αc) 1D(αc)

11D (Gc)

which simplify to

Fc Gc

Fc Gc,

αc

1Fc 1Gc

αc

and

Fc Fc

Gc Gc,

1Fc

αc αc

1Gc

so both of the diagonal maps are αc.

II. We know that composition of functors is strictly associative. We need to check that horizontal composition
of natural transformations is also stricly associative. Given

A B C D

F1

F2

α

G1

G2

β

H1

H2

γ ,

and c ∈ C we can form the two diagrams which define (γ ◦ (β ◦ α))c and ((γ ◦ β) ◦ α)c:
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(γ ◦ (β ◦ α))c :
H1(G1F1)c H2(G1F1)c

H1(G2F2)c H2(G2F2)c,

γ(G1F1c)

H1((β◦α)c) H2((β◦α)c)

γ(G2F2c)

((γ ◦ β) ◦ α)c :
(H1G1)F1c (H2G2)F1c

(H1G1)F2c (H2G2)F2c.

(γ◦β)(F1c)

H1G1(αc) H2G2(αc)

(γ◦β)(F2c)

We can now expand all instances of horizontal compositions of natural transformations into their defining
commutative squares, i.e.

(γ ◦ (β ◦ α))c :

H1(G1F1)c H2(G1F1)c

H1(G1F2)c H1(G2F1)c H2(G1F2)c H2(G2F1)c

H1(G2F2)c H2(G2F2)c,

γ(G1F1c)

H1G1(αc) H1(β(F1c)) H2G1(αc) H2(β(F1c))

H1(β(F2c)) H1G2(αc) H2(β(F2c)) H2G2(αc)

γ(G2F2c)

((γ ◦ β) ◦ α)c :

(H2G1)F1c

(H1G1)F1c (H2G2)F1c

(H1G2)F1c

(H2G1)F2c

(H1G1)F2c (H2G2)F2c

(H1G2)F2c.

H2(β(F1c))γ(G1F1c)

H1(β(F1c))

H1G1(αc) H2G2(αc)

γ(G2F1c)

H2(β(F2c))γ(G1F2c)

H1(β(F2c)) γ(G2F2c)

We can now make the following observations:

• both of the above diagrams have the same eight vertices;

• each diagram can be interpreted as a cube with two of its edges missing;

• whenever two vertices are connected by a map in both diagrams, these maps coincide;

• each diagram contains the two missing edges of the other;
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• superimposing the two diagrams on top of each other, aligning the common vertices and edges, yields
a commutative cube:

H1G1F1c H2G1F1c

H1G2F1c H2G2F1c

H1G1F2c H2G1F2c

H1G2F2c H2G2F2c,

γ(G1F1c)

H1(β(F1c))

H1G1(αc)

H2G1(αc)

H2(β(F1c))

γ(G2F1c)

H1G2(αc)

H2G2(αc)
γ(G1F2c)

H1(β(F2c))
H2(β(F2c))

γ(G2F2c)

We conclude that both diagonals are the diagonal of the same commutative cube, so they are equal. This
proves that horizontal composition is associative.

Thus, categories, functors, and natural transformations define a strict 2-category.
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